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FlatTree is a lightweight tool that implements basic operations on nested Python dictionaries, “trees”. It allows to
* merge trees into single tree
* access leaf nodes or branches using path-like “flat” keys
* use aliases for keys
* assign to or delete leaves or branches

The package has no dependencies other than The Python Standard Library.
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CHAPTER 1

Usage example

FlatTree is quite useful when working with application configurations. Consider an application module that stores
temporary objects in a file system cache. While in development, it’s convenient to store objects in JSON format
because of its human-readable nature. In production, objects are saved as pickles for performance.

Use FlatTree to merge configurations as needed:

>>> cfg_dev = {'processor': {'cache': {'format': 'json'}}}

>>> cfg_prod = {'processor': {'cache': {'format': 'pickle'}}}

>>> cfg_common = {'processor': {'cache': {'folder_options': ['.cache', 'cache'l}},
>>> 'logging': None}

>>> cfg = FlatTree (cfg_dev, cfg_common)
>>> cfg['processor.cache.format']

'json'

>>> cfg['processor.cache.folder.0'] # List item can be addressed individually
'.cache'’

>>> cfg.update_aliases ({'FMT': 'processor.cache.format'})

>>> cfg['FMT'] # Access with an alias

'Json'

It’s possible to update leaves and branches. For example, consider adding logging configuration:

cfgl'logging'] = {
'version': 1,
'disable_existing_loggers': False,

'loggers': {
VY:{

'level': 'INFO',
s
'my.module': {
'level': 'DEBUG',

by

Values are accessible both as “scalar” leaves and as subtrees:
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>>> cfg.update_aliases ({'loglevel':
>>> cfg['loglevel']

'INFO'

>>> cfg.update_aliases ({'loggers':
>>> cfg['loggers']

'logging.loggers..level'})

'logging.loggers'})

{'"'": {'"level': "INFO'}, 'my.module': {'level': 'DEBUG'}}
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CHAPTER 2

Installation

’ pip install flattree

2.1 API (sphinx-autodoc)

2.1.1 flattree package

FlatTree is a tool to work with nested Python dictionaries.

Submodules

flattree.api module

’

class flattree.api.FlatTree (*trees, root=None, sep="", esc="\’, aliases=None, default=None,

raise_key_error=False)
Main tool to work with nested dictionaries using “flat” keys.

Flat keys are path-like strings with key components joined by “sep”: e.g. ‘level01.level02.levelO3.leaf” where
dot is a sep.

*trees
flat or regular trees, merged initialization

root
flat key prefix (puts tree in branch rather than root)

Type str

sep
symbol to use when joining key components

Type str
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esc
symbol to escape sep in key components

Type str

aliases
dictionary in a form of {alias: flat_key}. Aliases are flat key shortcuts.

default
value to return if key is not found during dictionary access when raise_key_error is not set

raise_key_ error
if True, raise exception rather than return default

classmethod flatten (*trees, root=None, sep="", esc="\\")
Merges nested dictionaries into a flat key dictionary.

get (k[,d]) — DIk]ifk in D, else d. d defaults to None.

tree
Regular tree dynamically recovered from the flat tree.

update_aliases (aliases)
Updates alias dictionary, removes aliases if value is None

Parameters aliases — new aliases

flattree.logic module

flattree.logic.desparse (tree, na=None, reindex=True)
Converts branch(es) with integer keys into lists within a dictionary.

Dictionary with (all) integer keys acts as a sparse list with only non-void values actually stored. This func-
tion would convert sparse list into the regular one.

Examples
{1: ‘one’, 3: ‘three’} -> [‘one’, ‘three’] # if reindex {1: ‘one’, 3: ‘three’} -> [na, ‘one’, na, ‘three’] # if not
reindex
Parameters
* tree (dict) - dictionary
* na — value to fill in gaps
* reindex (bool) —if True, keep compact but change non-consecutive indices
Returns dict or list

flattree.logic.flatkey_to_keylist (flatkey, sep="", esc="\\")
Converts flatkey to a list of key components, extracts list indices

Components that look like integers, e.g. ‘1000’ get converted to integers, int(‘1000’) in this example.

Parameters
* flatkey (str)— flatkey string
* sep (str)—symbol to use when joining flat key components

* esc (str)—symbol to escape sep in key components

6 Chapter 2. Installation
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Returns key components, int if
Return type list
flattree.logic.genleaves (*trees, pre=None, sep="", esc="\\, idxbase=0, list_merger=<function

list_merger_list0>)
Generator used internally to merge trees and decompose them into leaves

Parameters

* trees - nested dictionaries to merge

* pre - list of key components to prepend to resulting flatkey strings

* sep (str) - symbol to use when joining flat key components

* esc (str)—symbol to escape sep in key components

e idxbase (int)— number at which list indices would start

* list_merger — function called on trees when leading tree is a list
Yields tuples (flatkey, scalar leaf value) Example: (‘my.branch.x’, 0)

flattree.logic.keylist_to_flatkey (keylist, sep="", esc="\\")
Converts list of key components to a flatkey string

Integer key components are considered list indices and get converted.
Parameters
* keylist (1ist) - list of key components
* sep (str)—symbol to use when joining flat key components
* esc (str)—symbol to escape sep in key components
Returns flatkey string
Return type str

flattree.logic.list_merger_ 1listO (*lists)
Picks leading list, discards everything else

flattree.logic.unflatten (flatdata, root=None, sep="., esc="\\", default=None,

raise_key_error=False)
Restores nested dictionaries from a flat tree starting with a branch.

Parameters
* flatdata (dict) — dictionary of values indexed by flatkeys
e root — branch to restore (None for the whole tree)
* sep (str)—symbol to use when joining flat key components
* esc (str)-symbol to escape sep in key components
* default - default value Returned in case no branch is found and raise_key_error is False.

* raise_key_error (bool)—if True, raise exception rather than return the default value
in case no branch is found

Returns Tree or leaf value or default.
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CHAPTER 3

Indices and tables

* genindex
* modindex

e search

3.1 Closing remarks

Author is aware that this kind of functionality has already been implemented a number of times elsewhere. However,
reinventing the wheel seemed a useful practice.
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